News

PRESSURE BOOSTER

SERIES BPA

Sizes: 40, 63, 100

- Easy and flexible installation
- Focused pressure increase
- Optimisation of the pneumatic circuit
- Energy efficient

This pressure booster has a pressure ratio of 2:1 that increases outlet pressure by up to 20 bar. It operates automatically when needed to generate a constant pressure increase while its mechanical design guarantees quick and easy installation, minimises heat generation and improves machine safety.

Two versions are available, with or without an integrated regulator that allows to adjust the desired outlet pressure and enables the efficient management of energy consumption.

It offers a compact, functional design with rapid filling times that makes the Series BPA ideal for applications where high pressure is only needed at specific points in the pneumatic circuit such as woodworking, marble and glass processing or with testing and assembly machines.

GENERAL DATA			
Sizes	40	63	100
Multiplication Ratio (Pout:Pin)	2:1	2:1	2:1
Inlet pressure	2-10 bar	2-8 bar	2-8 bar
Operating temperature	0-50 °C	0-50 °C	0-50 °C
Mounting position	any position	any position	any position
Flow rate (Pin = Pout = 5 bar)	250 l/min ANR	700 l/min ANR	1200 l/min ANR
Pneumatic connection	G1/4"	G3/8″	G1/2"
Weight (standard version)	0,85 Kg	3,00 Kg	5,90 Kg
Weight (version with regulator)	1,06 Kg	3.21 Kg	6,11 Kg
Materials	Body and barrels: aluminium - Rod: steel - Seals NBR	Body and end caps: aluminium - Barrels: extruded aluminium - Rod: steel - Seals: NBR	Body and end caps: aluminium - Barrels: extruded aluminium - Rod: steel - Seals NBR

CODING EXAMPLE

I	BPA	-	040	-	R1
BPA	SERIES				
040	SIZES: 40 63 100				
R1	REGULATOR = without regulator (P. R1 = with regulator (P. R2 = with regulator (P.	- MP01 IN 2-8bar - P.OUT 0-10bar) - N IN 2-10bar - P.OUT 0-16bar) -	ИРО2 МРО2		

PNEUMATIC SYMBOLS

BPA multiplier - Size 40

Examples of mounting

SERIES BPA - DIAGRAMS

MOZZ

Size 40 - Booster flow rate without regulator

Booster flow rate without regulator

Size 40 - Booster flow rate with regulator

BPA-040-R1

BPA-040-R2

Tank's filling time (10 l)

⊬ 35

30

25

20

15

10

5

0

0

0,5

1,5

2 P2 P1

P.OUT MAX = 10 bar

The graph shows the optimal range of use for the two booster models with regulator.

For example:

- Booster inlet pressure Pin = 5 bar, regulated outlet pressure Pout = 8 bar, you choose BPA-040-R1

- Booster inlet pressure Pin = 7 bar, regulated outlet pressure Pout = 12 bar, you choose BPA-040-R2

BPA multiplier - Size 63

News

Examples of mounting

SERIES BPA - DIAGRAMS

C<

CAMOZZI

Size 63 - Booster flow rate without regulator

Booster flow rate without regulator

Size 63 - Booster flow rate with regulator

BPA-063-R1

P.IN MAX = 8 bar P.OUT MAX = 10 bar

Size 63 - Optimal range of use for booster with regulator

The graph shows the optimal range of use for the two booster models with regulator.

For example:

- Booster inlet pressure Pin = 5 bar, regulated outlet pressure Pout = 8 bar, you choose BPA-063-R1

- Booster inlet pressure Pin = 7 bar, regulated outlet pressure Pout = 12 bar, you choose BPA-063-R2

BPA-063-R2

Tank's filling time (10 l)

AIR TREATMENT

9

BPA multiplier - Size 100

News

^{* =} version without regulator ** = version with R1, R2 regulator

Examples of mounting

C<

CAMOZZI

Size 100 - Booster flow rate without regulator

Booster flow rate without regulator

Size 100 - Booster flow rate with regulator

BPA-100-R1

BPA-100-R2

Tank's filling time (10 l)

P.IN MAX = 8 bar P.OUT MAX = 10 bar

Size 100 - Optimal range of use for booster with regulator

The graph shows the optimal range of use for the two booster models with regulator.

For example:

- Booster inlet pressure Pin = 5 bar, regulated outlet pressure Pout = 8 bar, you choose BPA-100-R1

- Booster inlet pressure Pin = 7 bar, regulated outlet pressure Pout = 12 bar, you choose BPA-100-R2

PRESSURE BOOSTERS / 2024/07 PRESSURE BOOSTER PRESSURE BOOSTER SERIES BPA - ACCESSORIES

Pressure regulators for BPA- ...R1

High pressure regulator for BPA- ...R2

Regulator flow rate diagrams of the regulator

MD1-R000

AIR TREATMENT

9

MD1-R900

BPA fixing kit with MD Series

The kit includes: 2x bushing with OR 4x special Ø4.5x34 white zinc-plated screws 1x plug with seal

Mod.	Α	В
BPA-1/4-C	G1/4	G1/4
BPA-3/8-C	G3/8	G3/8
BPA-1/2-C	G1/2	G3/8

Silencers Series 2901

Mod.	А	D	н	L	SW	Max operating pressure (bar)	Flow rate (Nl/min)	Noise db (A)
2901 1/4-17	G1/4	18.5	6	14	17	10	1000	78
2901 3/8	G3/8	23.5	7	16	22	10	1500	76
2901 1/2	G1/2	29.5	8	17.5	27	10	3400	86

Silencers Series 2931

-[]]>

SIL1

Mod.	А	D	Н	1	L	SW	Max. Oper. Pressure	Flow rate (Nl/min)	Noise db (A)
2931 1/4	G1/4	16.2	6	16.5	27	15	10	3200	86
2931 3/8	G3/8	20	7	23	35.5	19	10	4560	81
2931 1/2	G1/2	24.5	8	28	42	23	10	6800	87

Silencers Series 2928

Operating temperature: - 40 / + 80 °C

Mod.	А	D	н	L	Max. Oper. Pressure	Flow rate (Nl/min)	Noise db (A)	
2928 1/4	G1/4	16,6	7	42,5	10	2730	72	
2928 3/8	G3/8	18.8	11.5	67.5	10	6450	74	
2928 1/2	G1/2	24.8	10.5	79.5	10	8350	87	

Compact manometer

Precision class CL4,0

Mod.	Α	В	C	D	Н	SW	Range
M025-P10	G1/8	Ø25	28.5	7	15	11	0 ÷ 10 bar
M025-P20	G1/8	Ø25	28.5	7	15	11	0 ÷ 20 bar

Size 40 - Fixing plate

The kit includes: 1x galvanised plate 4x galvanised screws M4x10

SERIES BPA - APPLICATION EXAMPLE

Application example

Input data necessary for circuit dimensioning:

- Mains pressure (Booster inlet): Pin = 7,5 bar
- Pressure needed by the cylinder to perform the task required: Pout = 12 bar
- Multiplication ratio: R2 = 2
- Load pressure of the tank: $P2 = Pin \cdot R2 = 15$ bar
- Time in which the cylinder should perform the task: *Te* = 2 sec
- Waiting time between subsequent manoeuvres: *Ta* = 30 sec
- Cylinder diameter: *D* = 63 mm
- Cylinder stroke: *C* = 200 mm
- Booster size: 40

Calculation of the air quantity required by the cylinder during the work phase:

Calculation of the Booster's flow rate

Flow rate of a size 40 Booster without regulator

The air flow rate that can be provided by a size 40 Booster, with a P_{in} of 7,5 bar and a P_2 of 15 bar (ratio 2:1) can be found through the flow rate graph on the catalogue:

At a required Pout of 12 bar, the air flow rate that can be provided by the Booster is **Q**Booster = 217 L/min

$$t = \frac{T_{\text{R2}} - T_{\text{R1}}}{10L} = \frac{34 - 14}{10} = 2\frac{sec}{L}$$

As previously calculated, the quantity of air required by the cylinder to perform the task within the desired time $q_{\rm cil}=243\frac{L}{\rm min}$.

The flow rate of a size 40 Booster is lower than the flow rate required by the cylinder, it is necessary to use a bigger Booster or to insert a buffer tank.

PRESSURE BOOSTERS / 2024/07 PRESSURE BOOSTER SERIES BPA - APPLICATION EXAMPLE

Dimensioning of buffer tank

- 1. Calculate the initial multiplication ratio: $R1 = \frac{P_{out}}{P_{in}} = \frac{12}{7.5} = 1.6$
- 2. Through the graph you can find the filling time of a tank with a volume of 10 litres at a pressure of 12 bar.
 - 2.1. Find the time relating to multiplication ratio R1: T_{R1} = 14 sec
- 2.2. Find the time relating to multiplication ratio R2: $T_{R2} = 34$ sec 3. Calculate the normalised filling time, in seconds per litre of the tank: $t = \frac{T_{R2} - T_{R1}}{10L} = \frac{34 - 14}{10} = 2\frac{sec}{L}$

To avoid that the pressure of the tank falls below the necessary pressure of the system downstream, it will be necessary to use a tank with a volume of:

$$V = \frac{0.5 \cdot \left(Q_{\rm cil} - \frac{Q_{\rm booster}}{2}\right) \cdot T_e}{1.22} \cdot \frac{P_{\rm in}}{(P_2 - P_{\rm out})} = \frac{0.5 \cdot \left(243 - \frac{217}{2}\right) \cdot 2}{1.22} \cdot \frac{7,5}{(15 - 12)} = 4,6 L$$

- Calculate the tank's filling time: $T = t \cdot V = 2 \cdot 4, 6 \approx 9 s$
- Verify that the filling time of the tank is less than the waiting time between two subsequent manoeuvres: T ≤ T_a → 9 sec < 30 sec → VERIFIED

If this condition is not verified, go to the next size up of the booster or use more boosters in parallel.

Dimensioning of the supply line

For a correct dimensioning, the air flow rate required by the device must be less than the air provided by the Booster, with a correction factor K = 2,2

In the end you must verify that the supply line has a minimum capacity of:

$$Q_{\rm in} = K \cdot \min\left(\frac{Q_{\rm booster}}{Q_{\rm cil}}\right) = 2.2 \cdot \min\left(\frac{217}{243}\right) = 2.2 \cdot 217 = 477 \frac{L}{\min}$$

To obtain maximum efficiency and flow rate of the device, the maximum air requirement is shown in the following table:

For more complete and up to date information about the Car

BPA-040	BPA-063	BPA-100
$1000 \frac{L}{\min} ANR$	$2000 \frac{L}{\min} ANR$	$3000 \frac{L}{\min} ANR$

You therefore need to choose the right size for the 3/2-way NC value to supply the circuit in order to have a higher flow rate than the value required by the system. For example, supposing to use a value Series VMS, the right choice will be the 1/4" size:

VMS 1/4	VMS 3/8	VMS 1/2
$1200 \frac{L}{\min} ANR$	$2100 \frac{L}{\min} ANR$	$3350 \frac{L}{\min} ANR$

Products designed for industrial applications. General terms and conditions for sale are available on www.camoz This document contains a description of the products offered by Camozzi Automation at time of publi on about the Camozzi Automation product range, please refer to our online catalogue at http://catalogue.camoz

This calculation example is not valid if the version includes a regulator.